118 research outputs found

    Kinematic optimization for the design of a collaborative robot end-effector for tele-echography

    Get PDF
    Tele-examination based on robotic technologies is a promising solution to solve the current worsening shortage of physicians. Echocardiography is among the examinations that would benefit more from robotic solutions. However, most of the state-of-the-art solutions are based on the development of specific robotic arms, instead of exploiting COTS (commercial-off-the-shelf) arms to reduce costs and make such systems affordable. In this paper, we address this problem by studying the design of an end-effector for tele-echography to be mounted on two popular and low-cost collaborative robots, i.e., the Universal Robot UR5, and the Franka Emika Panda. In the case of the UR5 robot, we investigate the possibility of adding a seventh rotational degree of freedom. The design is obtained by kinematic optimization, in which a manipulability measure is an objective function. The optimization domain includes the position of the patient with regards to the robot base and the pose of the end-effector frame. Constraints include the full coverage of the examination area, the possibility to orient the probe correctly, have the base of the robot far enough from the patient’s head, and a suitable distance from singularities. The results show that adding a degree of freedom improves manipulability by 65% and that adding a custom-designed actuated joint is better than adopting a native seven-degrees-freedom robot

    Identification of gait phases with neural networks for smooth transparent control of a lower limb exoskeleton

    Get PDF
    Lower limbs exoskeletons provide assistance during standing, squatting, and walking. Gait dynamics, in particular, implies a change in the configuration of the device in terms of contact points, actuation, and system dynamics in general. In order to provide a comfortable experience and maximize performance, the exoskeleton should be controlled smoothly and in a transparent way, which means respectively, minimizing the interaction forces with the user and jerky behavior due to transitions between different configurations. A previous study showed that a smooth control of the exoskeleton can be achieved using a gait phase segmentation based on joint kinematics. Such a segmentation system can be implemented as linear regression and should be personalized for the user after a calibration procedure. In this work, a nonlinear segmentation function based on neural networks is implemented and compared with linear regression. An on-line implementation is then proposed and tested with a subject

    On the use of shape memory alloys for deployable passive heat radiators in space satellites

    Get PDF
    The present work presents a multifunctional structure for space engineering application part of the TOPDESS project, funded by ESA. The main aim of the project is the design of a thermal control device able to deploy through passive actuation. A combined device has been designed, made up of a Pulsating Heat Pipe (PHP) foldable heat exchanger and Shape Memory Alloy (SMA) wire. The deployment of the SMA wire is conceived to be controlled by thermal contact with the heat source and by conduction along the wire. Since the heat sources are lumped and the wire is subject to convection, a temperature gradient develops along the wire. A monodimensional mode able to predict the behavior of an SMA wire subjected to a spatial temperature gradient, is presented in this paper. The results show that the system can carry out folding and unfolding cycles with rotation angles greater than 80° only if the wire is subjected to uniform temperature distribution; in the case of temperature gradient, the achievable rotation angle is about 20°. The analysis states the feasibility of the actuation system, highlighting the critical technological aspects, to lay the groundwork for the future development of the whole system

    Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Get PDF
    Abstract A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore

    PIK3CA-Related Overgrowth Spectrum From Diagnosis to Targeted Therapy: A Case of CLOVES Syndrome Treated With Alpelisib

    Get PDF
    PIK3CA-related overgrowth spectrum (PROS) is an umbrella term referring to various clinical entities, which share the same pathogenetic mechanism. These conditions are caused by somatic gain-of-function mutations in PIK3CA, which encodes the 110-kD catalytic α subunit of PI3K (p110α). These PIK3CA mutations occur as post-zygotic events and lead to a gain of function of PI3K, with consequent constitutional activation of the downstream cascades (e.g., AKT/mTOR pathway), involved in cellular proliferation, survival and growth, as well as in vascular development in the embryonic stage. PIK3CA-related cancers and PROS share almost the same PIK3CA mutational profile, with about 80% of mutations occurring at three hotspots, E542, E545, and H1047. These hotspot mutations show the most potent effect on enzymatic activation of PI3K and consequent downstream biological responses. If present at the germinal level, these gain-of-function mutations would be lethal to the embryo, therefore we only see them in the mosaic state. The common clinical denominator of PROS disorders is that they are sporadic conditions, presenting with congenital or early childhood onset overgrowth with a typical mosaic distribution. However, the severity of PROS is highly variable, ranging from localized and apparently isolate overgrowth to progressive and extensive lipomatous overgrowth associated with life-threatening vascular malformations, as seen in CLOVES syndrome. Traditional therapeutic approaches, such as sclerotherapy and surgical debulking, are often not curative in PROS patients, leading to a recrudescence of the overgrowth in the treated area. Specific attention has been recently paid to molecules that are used and studied in the oncogenic setting and that are targeted on specific alterations of the pathway PI3K/AKT/mTOR. In June 2018, Venot et al. showed the effect of Alpelisib (BYL719), a specific inhibitor for the p110α subunit of PI3K, in patients with PROS disorders who had severe or life-threatening complications and were not sensitive to any other treatment. In these cases, dramatic anatomical and functional improvements occurred in all patients across many types of affected organ. Molecular testing in PROS patients is a crucial step in providing the conclusive diagnosis and then the opportunity for tailored therapy. The somatic nature of this group of diseases makes challenging to reach a molecular diagnosis, requiring deep sequencing methods that have to be performed on DNA extracted from affected tissue. Moreover, even analyzing the DNA extracted from affected tissue there is no guarantee to succeed in detection of the casual somatic mutation, since the affected tissue itself is highly heterogeneous and biopsy approaches can be burdened by incorrect sampling or inadequate tissue sample. We present an 8-year-old girl with CLOVES syndrome, born with a large cystic lymphangioma involving the left hemithorax and flank, multiple lipomas, and hypertrophy of the left foot and leg. She developed severe scoliosis. Many therapeutic approaches have been attempted, including Sildenafil treatment, scleroembolization, laser therapy, and multiple debulking surgeries, but none of these were of benefit to our patient's clinical status. She then started treatment with Rapamycin from May 2019, without significant improvement in both vascular malformation and leg hypertrophy. A high-coverage Whole Exome Sequencing analysis performed on DNA extracted from a skin sample showed a mosaic gain-of-function variant in the PIK3CA gene (p.H1047R, 11% of variant allele frequency). Once molecular confirmation of our clinical suspicion was obtained, after a multidisciplinary evaluation, we decided to discontinue Sirolimus and start targeted therapy with Alpelisib (50 mg/day). We noticed a decrease in fibroadipose overgrowth at the dorsal level, an improvement in in posture and excellent tolerability. The treatment is still ongoing

    A Bioinspired Plasmonic Nanocomposite Actuator Sunlight-Driven by a Photothermal-Hygroscopic Effect for Sustainable Soft Robotics

    Get PDF
    Combined photothermal-hygroscopic effects enable novel materials actuation strategies based on renewable and sustainable energy sources such as sunlight. Plasmonic nanoparticles have gained considerable interest as photothermal agents, however, the employment in sunlight-driven photothermal-hygroscopic actuators is still bounded, mainly due to the limited absorbance once integrated into nanocomposite actuators and the restricted plasmonic peaks amplitude (compared to the solar spectrum). Herein, the design and fabrication of an AgNPs-based plasmonic photothermal-hygroscopic actuator integrated with printed cellulose tracks are reported (bioinspired to Geraniaceae seeds structures). The nanocomposite is actuated by sunlight power density (i.e., 1 Sun = 100 mW cm−2). The plasmonic AgNPs are in situ synthesized on the PDMS surface through a one-step and efficient fluoride-assisted synthesis (surface coverage ≈40%). The nanocomposite has a broadband absorbance in the VIS range (>1) and a Photothermal Conversion Efficiency ≈40%. The actuator is designed exploiting a mechanical model that predicted the curvature and forces, featuring a ≈6.8 ± 0.3 s response time, associated with a ≈43% change in curvature and a 0.76 ± 0.02 mN force under 1 Sun irradiation. The plasmonic nanocomposite actuator can be used for multiple tasks, as hinted through illustrative soft robotics demonstrators, thus fostering a bioinspired approach to developing embodied energy systems driven by sunlight

    Recommendations for neonatologists and pediatricians working in first level birthing centers on the first communication of genetic disease and malformation syndrome diagnosis: consensus issued by 6 Italian scientific societies and 4 parents’ associations

    Get PDF
    Background: Genetic diseases are chronic conditions with relevant impact on the lives of patients and their families. In USA and Europe it is estimated a prevalence of 60 million affected subjects, 75% of whom are in developmental age. A significant number of newborns are admitted in the Neonatal Intensive Care Units (NICU) for reasons different from prematurity, although the prevalence of those with genetic diseases is unknown. It is, then, common for the neonatologist to start a diagnostic process on suspicion of a genetic disease or malformation syndrome, or to make and communicate these diagnoses. Many surveys showed that the degree of parental satisfaction with the methods of communication of diagnosis is low. Poor communication may have short and long-term negative effects on health and psychological and social development of the child and his family. We draw up recommendations on this issue, shared by 6 Italian Scientific Societies and 4 Parents’ Associations, aimed at making the neonatologist’s task easier at the difficult time of communication to parents of a genetic disease/malformation syndrome diagnosis for their child. Methods: We used the method of the consensus paper. A multidisciplinary panel of experts was first established, based on the clinical and scientific sharing of the thematic area of present recommendations. They were suggested by the Boards of the six Scientific Societies that joined the initiative: Italian Societies of Pediatrics, Neonatology, Human Genetics, Perinatal Medicine, Obstetric and Gynecological Ultrasound and Biophysical Methodologies, and Pediatric Genetic Diseases and Congenital Disabilities. To obtain a deeper and global vision of the communication process, and to reach a better clinical management of patients and their families, representatives of four Parents’ Associations were also recruited: Italian Association of Down People, Cornelia de Lange National Volunteer Association, Italian Federation of Rare Diseases, and Williams Syndrome People Association. They worked from September 2019 to November 2020 to achieve a consensus on the recommendations for the communication of a new diagnosis of genetic disease. Results: The consensus of experts drafted a final document defining the recommendations, for the neonatologist and/or the pediatrician working in a fist level birthing center, on the first communication of genetic disease or malformation syndrome diagnosis. Although there is no universal communication technique to make the informative process effective, we tried to identify a few relevant strategic principles that the neonatologist/pediatrician may use in the relationship with the family. We also summarized basic principles and significant aspects relating to the modalities of interaction with families in a table, in order to create an easy tool for the neonatologist to be applied in the daily care practice. We finally obtained an intersociety document, now published on the websites of the Scientific Societies involved. Conclusions: The neonatologist/pediatrician is often the first to observe complex syndromic pictures, not always identified before birth, although today more frequently prenatally diagnosed. It is necessary for him to know the aspects of genetic diseases related to communication and bioethics, as well as the biological and clinical ones, which together outline the cornerstones of the multidisciplinary care of these patients. This consensus provide practical recommendations on how to make the first communication of a genetic disease /malformation syndrome diagnosis. The proposed goal is to make easier the informative process, and to implement the best practices in the relationship with the family. A better doctor-patient/family interaction may improve health outcomes of the child and his family, as well as reduce legal disputes with parents and the phenomenon of defensive medicine
    • …
    corecore